Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis.

Author: AhujaShama D, AkkermanOnno W, Arakaki-SanchezDenise, AyakakaIrene, BaghaeiParvaneh, BangDidi, BanurekhaVelayutham V, BastosMayara, BenedettiAndrea, BonnetMaryline, CattamanchiAdithya, CegielskiPeter, ChienJung-Yien, CoxHelen, DedicoatMartin, ErkensConnie, EscalantePatricio, FalzonDennis, FregoneseFederica, GalliezRafael Mello, Garcia-PratsAnthony J, GegiaMedea, GillespieStephen H, GlynnJudith R, GoldbergStefan, GriffithDavid, JacobsonKaren R, JohnstonJames C, Jones-LópezEdward C, KhanAwal, KohWon-Jung, KritskiAfranio, LanZhi Yi, LeeJae Ho, LiPei Zhi, MacielEthel L, MenziesDick, MerleCorinne S C, MunangMelinda, NarendranGopalan, NguyenViet Nhung, NunnAndrew, OhkadoAkihiro, ParkJong Sun, PhillipsPatrick P J, PonnurajaChinnaiyan, RevesRandall, RomanowskiKamila, SchaafH Simon, SeungKwonjune, SkrahinaAlena, SoolingenDick van, TabarsiPayam, TrajmanAnete, TrieuLisa, ViikleppPiret, WangJann-Yuan, YoshiyamaTakashi

Paper Details 
Original Abstract of the Article :
Isoniazid-resistant, rifampicin-susceptible (INH-R) tuberculosis is the most common form of drug resistance, and is associated with failure, relapse, and acquired rifampicin resistance if treated with first-line anti-tuberculosis drugs. The aim of the study was to compare success, mortality, and acq...See full text at original site
Dr.Camel IconDr.Camel's Paper Summary Blogラクダ博士について

ラクダ博士は、Health Journal が論文の内容を分かりやすく解説するために作成した架空のキャラクターです。
難解な医学論文を、専門知識のない方にも理解しやすいように、噛み砕いて説明することを目指しています。

* ラクダ博士による解説は、あくまで論文の要点をまとめたものであり、原論文の完全な代替となるものではありません。詳細な内容については、必ず原論文をご参照ください。
* ラクダ博士は架空のキャラクターであり、実際の医学研究者や医療従事者とは一切関係がありません。
* 解説の内容は Health Journal が独自に解釈・作成したものであり、原論文の著者または出版社の見解を反映するものではありません。


引用元:
https://pubmed.ncbi.nlm.nih.gov/29595509

データ提供:米国国立医学図書館(NLM)

Isoniazid-Resistant Tuberculosis: A Multifaceted Challenge

Tuberculosis (TB), a persistent threat to global health, continues to challenge our understanding of disease pathogenesis and treatment strategies. This study, like a team of researchers navigating a complex and shifting desert landscape, explores the complexities of isoniazid-resistant TB, focusing on the effectiveness of various treatment regimens. The researchers, like cartographers mapping a diverse terrain, compare different treatment durations and drug combinations, offering valuable insights into optimizing treatment outcomes.

Optimizing Treatment for Isoniazid-Resistant TB

This study provides valuable insights into the optimal treatment of isoniazid-resistant TB. The researchers, like architects designing a sturdy structure to withstand the elements, found that different treatment durations and drug combinations yield varying success rates and risks of acquired drug resistance. These findings provide essential guidance for clinicians in selecting the most effective and safe treatment options for patients with isoniazid-resistant TB.

Improving TB Treatment Outcomes

This study underscores the importance of individualized treatment approaches for patients with isoniazid-resistant TB. The researchers, like guides leading a caravan through a challenging desert, highlight the need to carefully consider each patient's unique circumstances, including drug resistance patterns and potential risks of adverse events. This personalized approach is essential for optimizing treatment outcomes and improving patient well-being.

Dr.Camel's Conclusion

This research, like a caravan carrying supplies through a harsh desert, provides essential insights into the complexities of isoniazid-resistant TB. The study's findings highlight the importance of individualizing treatment approaches based on drug resistance patterns and potential risks. This research is crucial for improving treatment outcomes and reducing the burden of TB worldwide.

Date :
  1. Date Completed 2018-10-19
  2. Date Revised 2022-07-16
Further Info :

Pubmed ID

29595509

DOI: Digital Object Identifier

NIHMS1790350

SNS
PICO Info
in preparation
Languages

English

Positive IndicatorAn AI analysis index that serves as a benchmark for how positive the results of the study are. Note that it is a benchmark and requires careful interpretation and consideration of different perspectives.

This site uses cookies. Visit our privacy policy page or click the link in any footer for more information and to change your preferences.