Effectiveness of multiple disease-modifying therapies in relapsing-remitting multiple sclerosis: causal inference to emulate a multiarm randomised trial.

Author: Aguera-MoralesEduardo, Al-AsmiAbdullah, Al-HarbiTalal M, AlroughaniRaed, AltintasAyse, AmpapaRadek, BergamaschiRoberto, BozCavit, ButzkuevenHelmut, CartechiniElisabetta, Castillo-TrivinoTamara, CsepanyTunde, DioufIbrahima, DuquettePierre, EichauSara, FerraroDiana, GerlachOliver, GouiderRiadh, GrammondPierre, Grand'MaisonFrancois, GranellaFranco, GrayOrla, HodgkinsonSuzanne, HorakovaDana, HughesStella, IulianoGerardo, KalincikTomas, KapposLudwig, KarabudakRana, Kubala HavrdovaEva, LaureysGuy, Lechner-ScottJeannette, LugaresiAlessandra, MalpasCharles B, McCombePamela A, McGuiganChristopher, OnofrjMarco, OzakbasSerkan, PattiFrancesco, PratAlexandre, RoosIzanne, SaMaria Jose, SempereAngel P, SharminSifat, ShawCameron, ShaygannejadVahid, SidhomYoussef, SleeMark, SolaPatrizia, SolaroClaudio, StuartElizabeth A, Sánchez-MenoyoJosé Luis, TerziMurat, Treviño FrenkIrene, VucicSteve, YamoutBassem, de GansKoen, van der WaltAnneke

Paper Details 
Original Abstract of the Article :
BACKGROUND: Simultaneous comparisons of multiple disease-modifying therapies for relapsing-remitting multiple sclerosis (RRMS) over an extended follow-up are lacking. Here we emulate a randomised trial simultaneously comparing the effectiveness of six commonly used therapies over 5 years. METHODS: ...See full text at original site
Dr.Camel IconDr.Camel's Paper Summary Blogラクダ博士について

ラクダ博士は、Health Journal が論文の内容を分かりやすく解説するために作成した架空のキャラクターです。
難解な医学論文を、専門知識のない方にも理解しやすいように、噛み砕いて説明することを目指しています。

* ラクダ博士による解説は、あくまで論文の要点をまとめたものであり、原論文の完全な代替となるものではありません。詳細な内容については、必ず原論文をご参照ください。
* ラクダ博士は架空のキャラクターであり、実際の医学研究者や医療従事者とは一切関係がありません。
* 解説の内容は Health Journal が独自に解釈・作成したものであり、原論文の著者または出版社の見解を反映するものではありません。


引用元:
https://doi.org/10.1136/jnnp-2023-331499

データ提供:米国国立医学図書館(NLM)

Emulating a Multi-Arm Randomized Trial: Comparing Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis

Relapsing-remitting multiple sclerosis (RRMS) is a complex neurological condition that presents a challenging landscape for patients and their healthcare providers. This study investigates the effectiveness of various disease-modifying therapies for RRMS using a novel approach that emulates a multi-arm randomized trial. This research, much like a skilled guide leading a group of travelers through a complex desert, offers a comprehensive comparison of different treatment options.

Comparative Effectiveness of Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis

The study found that natalizumab and fingolimod demonstrated superior effectiveness in reducing relapses and disability worsening compared to other therapies. This research provides valuable insights into the relative effectiveness of different treatments, empowering clinicians to make more informed decisions about patient care. This research, like a desert traveler discovering a hidden oasis with multiple springs, reveals the benefits of different approaches to treating RRMS.

Comparative Effectiveness of Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis

This study offers a valuable guide for clinicians, helping them navigate the complex landscape of treatment options for RRMS. This research, like a map of the desert, provides a comprehensive overview of different therapeutic approaches and their relative effectiveness. This research empowers clinicians to make more informed decisions about patient care.

Dr.Camel's Conclusion

This study provides a comprehensive comparison of disease-modifying therapies for RRMS, helping clinicians make informed treatment decisions for their patients. This research, like a well-traveled caravan leader sharing knowledge of the desert, offers a valuable resource for navigating the complex terrain of RRMS treatment.

Date :
  1. Date Completed 2023-11-17
  2. Date Revised 2023-11-17
Further Info :

Pubmed ID

37414534

DOI: Digital Object Identifier

10.1136/jnnp-2023-331499

Related Literature

SNS
PICO Info
in preparation
Languages

English

Positive IndicatorAn AI analysis index that serves as a benchmark for how positive the results of the study are. Note that it is a benchmark and requires careful interpretation and consideration of different perspectives.

This site uses cookies. Visit our privacy policy page or click the link in any footer for more information and to change your preferences.