Diagnostic prediction models for CT-confirmed and bacterial rhinosinusitis in primary care: individual participant data meta-analysis.

Author: AlhoOlli-Pekka, AutioTimo, EbellMark H, HansenJens G, HooglandJeroen, LindbaekMorten, ReitsmaJohannes B, TakadaToshihiko, VenekampRoderick P

Paper Details 
Original Abstract of the Article :
BACKGROUND: Antibiotics are overused in patients with acute rhinosinusitis (ARS) as it is difficult to identify those who benefit from antibiotic treatment. AIM: To develop prediction models for computed tomography (CT)-confirmed ARS and culture-confirmed acute bacterial rhinosinusitis (ABRS) in ad...See full text at original site
Dr.Camel IconDr.Camel's Paper Summary Blogラクダ博士について

ラクダ博士は、Health Journal が論文の内容を分かりやすく解説するために作成した架空のキャラクターです。
難解な医学論文を、専門知識のない方にも理解しやすいように、噛み砕いて説明することを目指しています。

* ラクダ博士による解説は、あくまで論文の要点をまとめたものであり、原論文の完全な代替となるものではありません。詳細な内容については、必ず原論文をご参照ください。
* ラクダ博士は架空のキャラクターであり、実際の医学研究者や医療従事者とは一切関係がありません。
* 解説の内容は Health Journal が独自に解釈・作成したものであり、原論文の著者または出版社の見解を反映するものではありません。


引用元:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282805/

データ提供:米国国立医学図書館(NLM)

Predicting Rhinosinusitis: A Meta-analysis of Diagnostic Models

The study of primary care medicine is a constant exploration of diagnostic tools and clinical decision-making. This meta-analysis delves into the landscape of rhinosinusitis, a common condition characterized by inflammation of the nasal sinuses. The authors aimed to develop prediction models for identifying CT-confirmed acute rhinosinusitis (ARS) and culture-confirmed acute bacterial rhinosinusitis (ABRS) in primary care settings.

The authors analyzed individual participant data from multiple studies, developing prediction models using logistic regression. The models identified several factors associated with ARS and ABRS, including previous diagnosis of ARS, preceding upper respiratory tract infection, anosmia, purulent nasal discharge, and CRP levels.

Improving Rhinosinusitis Diagnosis and Antibiotic Use

This research provides valuable tools for improving the diagnosis of rhinosinusitis in primary care settings. The developed prediction models can assist clinicians in identifying patients who are more likely to benefit from antibiotic treatment and those who may not require antibiotics.

Navigating Rhinosinusitis: Seeking Professional Guidance

If you experience symptoms suggestive of rhinosinusitis, it's essential to seek professional medical advice. A qualified healthcare provider can perform a thorough evaluation, order necessary tests, and provide appropriate treatment recommendations.

Dr.Camel's Conclusion

This research, like a desert guide leading travelers through a labyrinth of medical knowledge, provides valuable tools for improving the diagnosis and management of rhinosinusitis. The authors' development of predictive models can help clinicians make more informed decisions regarding antibiotic use, potentially reducing unnecessary antibiotic prescribing.

Date :
  1. Date Completed 2022-08-01
  2. Date Revised 2022-08-08
Further Info :

Pubmed ID

35817585

DOI: Digital Object Identifier

PMC9282805

SNS
PICO Info
in preparation
Languages

English

Positive IndicatorAn AI analysis index that serves as a benchmark for how positive the results of the study are. Note that it is a benchmark and requires careful interpretation and consideration of different perspectives.

This site uses cookies. Visit our privacy policy page or click the link in any footer for more information and to change your preferences.